

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME			
CENTRE NUMBER		CANDIDATE NUMBER	

6063184276

CO-ORDINATED SCIENCES

0654/33

Paper 3 (Core)

October/November 2019

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer **all** questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

A copy of the Periodic Table is printed on page 32.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 30 printed pages and 2 blank pages.

1 (a) Fig. 1.1 is a diagram of a section through the heart and associated blood vessels.

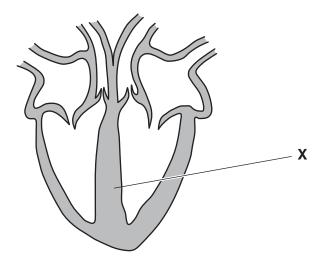


Fig. 1.1

(i)	Name the structure labelled X in Fig. 1.1.	
(ii)	Name the structure shown in Fig. 1.1 that ensures one-way flow of blood.	[1]
		[1]
(iii)	Draw an arrow on Fig. 1.1 to show where blood enters the heart from the lungs.	[1]
Tab	le 1.1 shows some of the functions of the components of blood.	

Table 1.1

component of blood	function
	antibody production and phagocytosis
	promotes blood clotting
	transport of dissolved nutrients
	transport of oxygen

Complete Table 1.1 by adding the name of the component of blood which has each function. [4]

© UCLES 2019 0654/33/O/N/19

(b)

		3			
(c)	Substances are trans	sported around the body	by blood in blood v	essels.	
	Substances are also	transported around plar	nts in vessels.		
	Name the two vesse	ls that transport substan	ces in plants .		
	1				
	2				
					[2]
(d)	Water is one of the transpiration.	substances transported	d through plants ar	nd is lost by the process	s of
	Complete the definiti	on of the term transpirat	ion using words or ເ	phrases from the list.	
	Each word or phrase	may be used once, mo	re than once or not	at all.	
	absorption	diffusion	epidermis	evaporation	
	palisade cells	photosynthesis	roots	stomata	
	Transpiration is defin	ed as the loss of water	apour from plant le	aves by	
	of water at the surfa	ces of the mesophyll ce	lls followed by	of w	ater
	vapour through the				[3]

[Total: 12]

2 (a) Fig. 2.1 shows the symbols of six elements and six statements about these elements.

On Fig. 2.1 draw one straight line from each symbol to the correct statement.

One line has already been drawn for you.

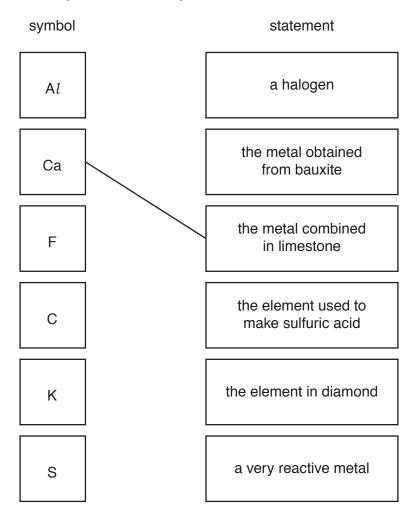


Fig. 2.1

[3]

(b) The chemical symbols of an atom of beryllium and an atom of boron are shown in Fig. 2.2.

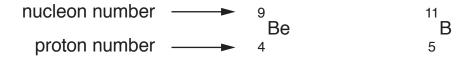


Fig. 2.2

Complete Table 2.1 to show the numbers of neutrons and electrons in these atoms.

Table 2.1

	neutrons	electrons
Ве		
В		

[2]

(c) Sodium and chlorine combine to form sodium chloride.

Fig. 2.3 shows the electronic structure of an atom of sodium and of an atom of chlorine.

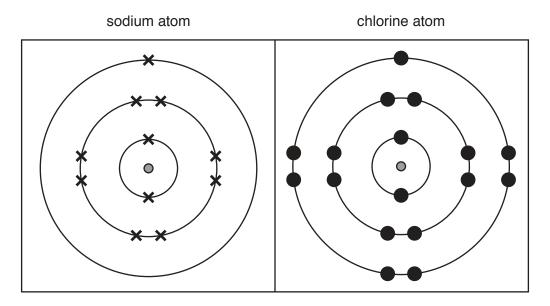


Fig. 2.3

Complete Fig. 2.4 to show the electronic structures of the ions that form from these atoms.

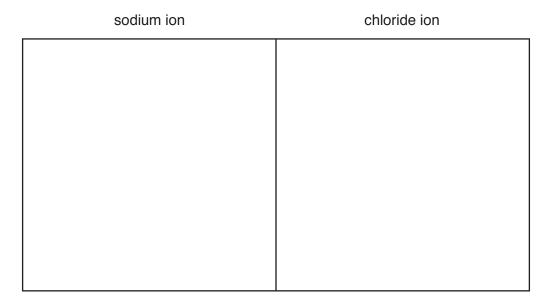


Fig. 2.4

[2]

(d) Fig. 2.5 shows apparatus a student uses to produce a neutral solution of sodium chloride.

Apparatus **F** contains a dilute acid which is added slowly to an alkaline solution contained in the beaker.

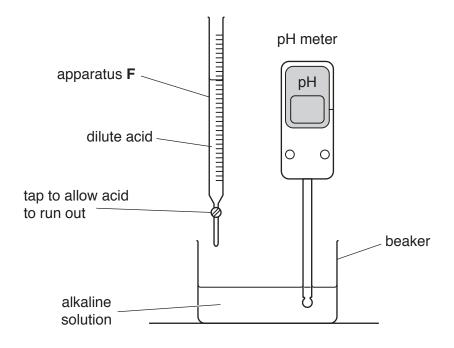


Fig. 2.5

(i)	Name apparatus F.	
		[1]
(ii)	State the alkaline solution and the dilute acid that react to produce sodium chloride.	
	alkaline solution	
	dilute acid	
		[2]
(iii)	Suggest a value of the pH of the solution in the beaker before any acid is added.	
	pH =	[1]
	[Total:	11]

_							
3 ((a)	Α	airl is	on a	a bridge	over a	river.

(i)	Complete the sentences by choosing the correct words or phrases from the list.
	Fach word or phrase may be used once, more than once or not at all

chemical	constant	decr	easing	friction	gravitational p	otential
	increasing	joules	kinetic	newtons	weight	
	The girl picks up	a stone and	drops it over	the side of the br	idge.	
	The stone loses			ener	gy and gains	
			ener	gy.		
	The stone falls w	ith		a	cceleration due to	gravity.
	The vertical force	acting upwa	rds on the sto	one as it falls is o	alled	
			and	is due to air resis	stance.	[3]
(ii)	The river is 30 m	below the bri	dge.			[-1
	After 1.7s the sto	one hits the si	urface of the	water.		
	Calculate the ave	erage speed o	of the falling s	stone.		
			sne	ed -		m/e [2]
(iii)	State the source	e of the ara	•		erating the stone	
(111)	downwards.	e or the gra	ivitational lic	id that is acce	crating the stone	vertically
						[1]
(b) Th	e stone enters the	water.				
(i)	Describe how the stone.	e force of water	er acting on t	he stone affects	the downwards mo	tion of the
						F 4.7

	(ii)	The stone enters the water with 450 J of kinetic energy.
		200 J is transferred to kinetic energy of the water.
		100 J is transferred to thermal energy of the water.
		2J is transferred to sound energy.
		Determine the remaining kinetic energy of the stone.
		remaining kinetic energy = J [1
(c)	A h	ydroelectric power station is being built in the river valley.
	(i)	Describe how electrical energy is obtained from the water behind a hydroelectric dam.
		[2
	(ii)	The power cables from the power station are supported by pylons.
		Fig. 3.1 shows the arrangement of the cables between the pylons.
		Fig. 3.1
		Describe the effect of cold weather on the length of the cables between the pylons.
		[1
	(iii)	The pylons are spaced equally so that the weight of the cables on each side of the pylon balance.
		This means the pylons are in equilibrium.
		State the resultant turning effect on the pylons.
		[1
		[Total: 12

4 (a) A student investigates the conditions needed for germination of cress seeds.

She puts the same number of cress seeds into four test-tubes, A, B, C and D.

The test-tubes are left in different conditions for five days.

Table 4.1 shows the conditions of each test-tube and the results after five days.

Table 4.1

condition	test-tube					
Condition	Α	В	С	D		
given water	yes	no	yes	yes		
temperature/°C	4	21	21	21		
kept in light/dark	light	light	light	dark		
seeds germinated	no	no	yes	yes		

	(i)	Explain why	the cress seeds in test-tube	s A and B did	d not ger	minate.		
		A						
		В						
	(ii)	State one o	onclusion from the results sh	-				[2]
							[
(b)	Ger	minating see	eds need oxygen for respiration	on.				
	Stat	e the word e	equation for respiration.					
							[2
(c)	Ene	rgy released	from respiration has many d	ifferent uses.				
	Put	ticks (✓) in t	he boxes to show all the use	s of energy n	eeded by	/ germinati	ng seeds.	
			muscle contraction					
			protein synthesis					
			cell division					
			growth	ļ				
			maintenance of body temper	rature				

[2]

(d)	Respiration is one of the characteristics of living things.
	Name the characteristic of living things that is defined by:
	the ability to detect and respond to changes in the environment
	an action by an organism causing a change of position or place.
	[2]
	[Total: 9]

5	(a)	Meteorites	fall to	Earth	from	space.
---	-----	------------	---------	-------	------	--------

Some meteorites are mixtures of iron, nickel and other metals.

(i) State the term used for a mixture of metals.

State two other **physical** properties of metals.

	_
 [1]]

(ii) Metals tend to be shiny and some are sonorous (make a ringing sound when struck).

1

[2]

(iii) Name the collection of metals in the Periodic Table that contains iron and nickel.

(b) A teacher uses the apparatus shown in Fig. 5.1 to heat four different mixtures containing a powdered metal oxide and powdered carbon.

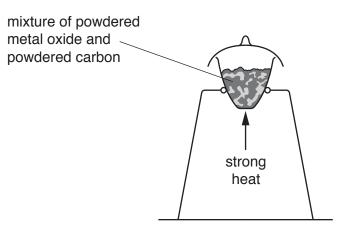


Fig. 5.1

His observations are shown in Table 5.1.

Table 5.1

mixture	observation
calcium oxide + carbon	no reaction
copper oxide + carbon	exothermic reaction
lead oxide + carbon	exothermic reaction
magnesium oxide + carbon	no reaction

	Use ideas about reactivity to explain the observations.
	[2]
(c)	The symbol equation for the reaction between zinc oxide and carbon is shown.
	$2ZnO + C \longrightarrow 2Zn + CO_2$
	Use the substances involved in this reaction to describe <i>reduction</i> and <i>oxidation</i> .
	[2]
	[Total: 8]

6	(a)	Fig.	6.1 shows a bar magnet. It is not known which end is the north pole or the south pole.	
			Fig. 6.1	
		(i)	A boy has a second bar magnet. He knows which end is the south pole and which end the north pole.	l is
			Describe how he can use the second magnet to determine which end is the south pand which end is the north pole of the magnet in Fig. 6.1.	ole
				[2]
		(ii)	Draw the pattern and direction of magnetic field lines around the bar magnet in Fig. 6.	2.
			N S	
			Fig. 6.2	
			1 ig. 0.2	[3]
	(b)	The	e boy hears music from a radio.	
		The	e loudness of the music increases. At the same time, the music changes to a lower pitcl	٦.
			te how the amplitude and the frequency of the sound wave change as the loudner eases and the pitch becomes lower.	SS
		amı	olitude	
		frec	juency	 [2]
	(c)	The	boy has healthy hearing so he can clearly hear the sounds from the radio.	[~]
	ν-,		te the range of audible frequencies that the boy can hear.	
			n Hz to	17
		011		. <u>-</u> [1]

[Total: 8]

BLANK PAGE

7 (a) A student investigates the conditions needed for photosynthesis.

He keeps similar plants in different conditions for two days and then tests the leaves for starch.

Table 7.1 is a table for the results.

Table 7.1

test	conditions plant kept in	does the plant photosynthesise? (✓ / 🗡)
1	carbon dioxidelight	
2	carbon dioxideno light	
3	no carbon dioxidelight	
4	no carbon dioxideno light	

	Complete Table 7.1 to predict the expected results.	[1]
(b)	Describe the test for starch and the positive result.	
	test	
	positive result	 [2]
		[-]
(c)	Oxygen produced during photosynthesis moves out of the plant cells.	
	Explain in detail how oxygen moves out of plant cells.	
	Use the word concentration in your answer.	
		[3]

(d) Fig. 7.1 is a diagram of a plant cell.

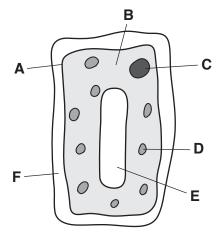


Fig. 7.1

(i)	Identify the letter from Fig. 7.1 that shows where photosynthesis occurs.	
		[1]
(ii)	Name the part you have identified in (d)(i).	
		[1]
(iii)	Name two parts of plant cells that are also present in animal cells.	
	1	
	2	
		[2]
	[Tota	l: 10]

8 Fig. 8.1 is a chart showing the composition of clean air.

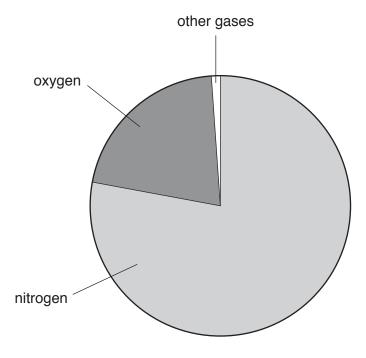


Fig. 8.1

(a) (i) Suggest the percentage of the section labelled other gases.

Use your knowledge of the amounts of nitrogen and oxygen in air.

	percentage of other gases = % [2]
(ii)	The other gases in Fig. 8.1 include very unreactive elements.
	State one of these unreactive elements.
	[1]
(iii)	State, in terms of electronic structure of its atoms, why the element in (a)(ii) is unreactive.
	[1]
(iv)	State two harmful gaseous oxides that are present in polluted air.
	1
	2[2]
	[4]

(b) Fig. 8.2 shows apparatus used in the electrolysis of dilute sulfuric acid.

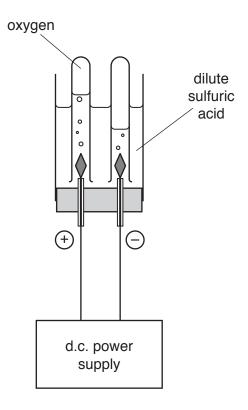


Fig. 8.2

(i)	State the term used to describe the dilute sulfuric acid in this electrolysis experiment.	
		[1]
(ii)	Identify the gas produced at the cathode.	
		[1]

(c) Fig. 8.3 shows apparatus a student uses to investigate the rate of reaction between calcium carbonate and dilute hydrochloric acid.

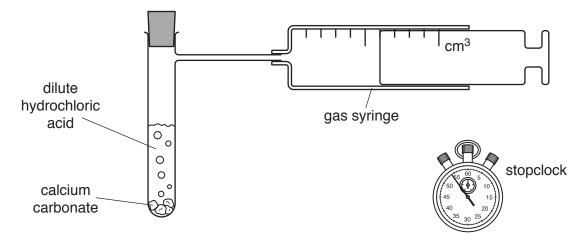
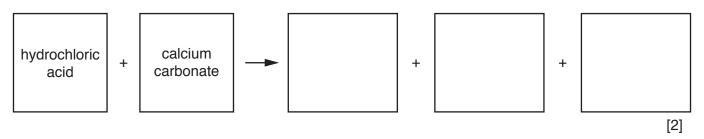



Fig. 8.3

(i) Complete the word equation for this reaction.

(ii) It takes 50 seconds for 80 cm³ of gas to collect in the gas syringe.

Calculate the rate at which the gas is produced in \mbox{cm}^3/\mbox{s} .

	rate = cm ³ /s [1]									
(iii)	State one change to the reaction conditions that reduces the rate of reaction.									
	[1]									

[Total: 12]

BLANK PAGE

9 (a) A technician is checking for sources of radioactive emissions around a be	i bullalna
---	------------

(i)
\- /

A piece of paper is placed in front of the source and the radiation is no longer detected from the source.

Identify the type of radiation being emitted by the source.

·	F 4	4.7
	17	4
		4

(ii) The radioactive source is removed.

State why the radiation detector continues to detect a small amount of radiation.

.....[1]

(b) The graph in Fig. 9.1 shows the decay curve for a radioactive source.

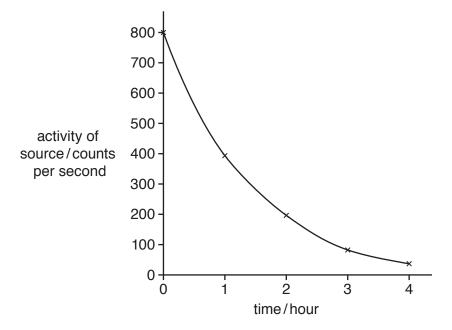


Fig. 9.1

Determine the half-life of the source.

Show on the graph how you determined your answer.

......[2]

(c) The radiation detector is powered by a battery. Fig. 9.2 shows the part of the electrical circuit which lights a lamp when the detector is switched on.

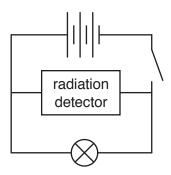


Fig. 9.2

(i) The technician checks the potential difference across the lamp.

On Fig. 9.2 add the circuit symbol for a meter to measure the potential difference across the lamp. [2]

(ii) The current supplied by the battery is 0.1 A.

The technician adds another cell to the battery.

Describe how the current changes.

[1]

(iii) Complete the sentence to describe current in metals.

Current in metals is due to the flow of[1]

[Total: 8]

10 (a) The graph in Fig. 10.1 shows the area of land cleared by deforestation in one country between 2000 and 2010.

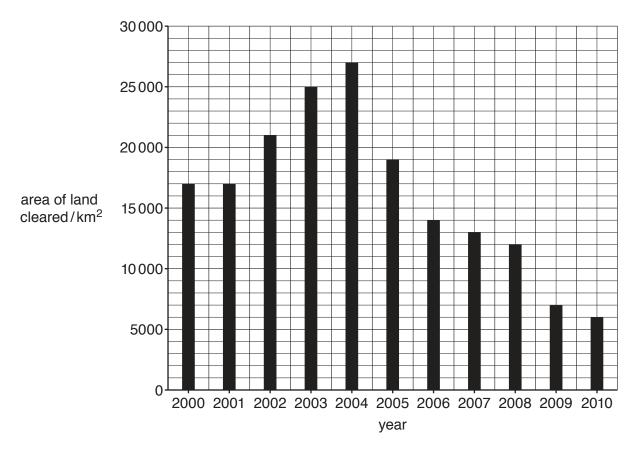


Fig. 10.1

(i)	Describe the pattern in the results shown in Fig. 10.1.
	Include data in your answer.
	[2]
(ii)	Calculate the percentage decrease in the area of land cleared between 2008 and 2009.
	0/ [0]
	% [2]

(b)	Def	orestation can cause a build	d-up of carbon dioxide in the atmosphere.
		scribe one way that human osphere.	as directly increase the concentration of carbon dioxide in the
			[1]
(c)	Mar	ny human activities create p	pollution which is harmful to the environment.
	(i)	The boxes on the left show	v some water pollutants.
		The boxes on the right sho	ow the sources of these pollutants.
		Draw one line from each p	pollutant to its source.
		pollutant	source
		chemical waste	crop plant agriculture / farming
		fertiliser	domestic / household waste
		rubbish (solid waste)	human and animal faeces
		untreated sewage	industries
	(ii)	State one harmful effect o	-
			[1]
			[Total: 9]

11 Fig. 11.1 shows the structure of three molecules, ethene, ethanol and methane.

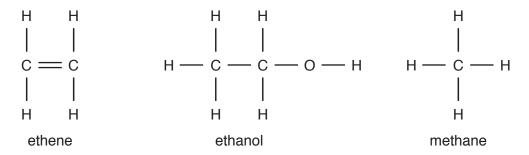


Fig. 11.1

(a)	State which	of these	molecules is	not a	hydrocarbon.
-----	-------------	----------	--------------	-------	--------------

moleculeexplanation

[1]

(b) (i) Alkanes and alkenes are two different families of hydrocarbons.

Six hydrocarbons, **L** to **Q**, are listed below.

L butene

Explain your answer.

- M dodecane
- N hexane
- O octane
- P pentene
- **Q** propane

Select from the letters **L** to **Q** the hydrocarbons that are alkenes.

.....[1

	(ii)	Describe a chemical test that shows whether a hydrocarbon is an alkane or an alkene.
		test
		result with an alkane
		result with an alkene
		[2]
(c)		anol is made when ethene reacts at high temperatures with substance $oldsymbol{U}$ in the presence catalyst.
	(i)	Identify substance U .
		[1]
	(ii)	State the purpose of a catalyst in chemical reactions.
		[1]

(d) Fig. 11.2 shows a process that produces an aqueous solution containing ethanol.

The gas given off causes limewater to turn milky.

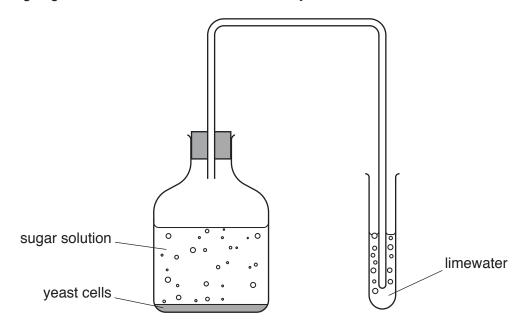


Fig. 11.2

(i)	Name the process shown in Fig. 11.2.		
			[1]
(ii)	Name the gas given off.		
			[1]
(iii)	State a method that is used to separate ethanol from the aqueous solution.		
			[1]
		[Total:	9]

12 (a) Fig. 12.1 shows an electric heater containing three heating elements.

Fig. 12.2 shows how a heating element is made of metal wire wound around a ceramic rod.

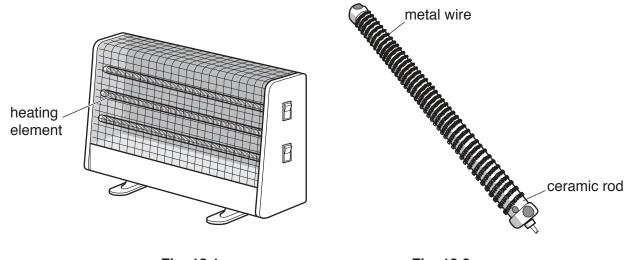


Fig. 12.1 Fig. 12.2

(i)	Describe what happens to the motion of the atoms in the solid metal wire as it increases in temperature.
	[1]
(ii)	Explain why the metal wire is wound around a ceramic rod and not around a metal rod.
	[1]
(iii)	State two methods of thermal energy transfer from the heater to a person in the room.
	1
	2
	[2]

(b) The heater is plugged into an extension socket along with other appliances.

Fig. 12.3 shows the extension socket plugged into a single socket which is connected to the mains supply.

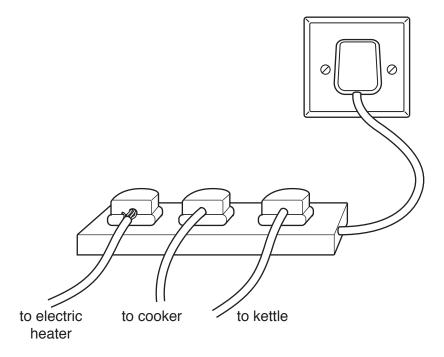


Fig. 12.3

		•								
(i)	Identify two electrical h	azards in Fig.	12.3.							
	1									
2										
						[2]				
(ii)	The plug for the heater	requires a ne	w fuse.							
	The current through th	e heater is 10	A in normal u	se.						
	Four different fuse ratings are available.									
	3 A	10 A	13 A	30 A						
	State the most approp	riate fuse rating	g.							
(iii)	State the purpose of a	fuse in an elec	ctrical applia	nce.						
						. [1]				

(c)	The	heater e	emits vis	sible light	and in	frared	radia	ation.			

(i)	Place	visible	light	and	infrared	in	their	correct	positions	in	the	incomplete
	electro	magnetic	spect	rum ir	n Fig. 12.4.							

gamma rays						radio waves
------------	--	--	--	--	--	-------------

	Fig. 12.4		

(ii)	Each part of the electromagnetic spectrum has a different frequency.	
	In terms of waves, state the meaning of the term frequency.	
		[1]

(d) Two heating elements are connected in series.

Each heating element has an electrical resistance of 6Ω .

Calculate the combined resistance of the two heating elements.

resistance = Ω [1]

[Total: 12]

[2]

The Periodic Table of Elements

		2	He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon -				
	=				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ä	bromine 80	53	н	iodine 127	85	¥	astatine -				-
	5				8	0	oxygen 16	16	S	sulfur 32	34	Se	selenium 79	52	<u>е</u>	tellurium 128	84	Po	polonium	116		vermorium	_
	>									shosphorus 31													_
	2									silicon p										114	Εl	flerovium	-
	=									aluminium 27													-
											30	Zu	zinc 65	48	В	cadmium 112	80	Нg	mercury 201	112	S	opernicium	_
											29	Cn	copper 64	47	Ag	silver 108	62	Αu	gold 197	111	Rg	E	
۵											28	z	nickel 59	46	Pq	palladium 106	78	Ŧ	platinum 195	110	Ds	Ē	
Group											27	ဝိ	cobalt 59	45	牊	rhodium 103	77	'n	iridium 192	109	¥	-	_
		_	ェ	hydrogen 1							26	Fe	iron 56	44	Ru	uthenium 101	92	SO	osmium 190	108	H _s	hassium n	_
											25	Mn	nanganese 55	43	ပ	echnetium -	75	Re	rhenium 186	107	Bh	bohrium	
						_													tungsten 184				
				Key	atomic number	atomic symbo	name relative atomic mass					>	anadium 51						tantalum 181				_
					ator	atom	relative				22	F	titanium ,	40	Zr	zirconium 91	72	士	hafnium 178	104	꿆	utherfordium -	_
]			21	Sc	scandium 45	39	>	yttrium 2 89	57-71	nthanoids		89–103	actinoids		_
	=				4	Be	oeryllium 9	12	Mg	nagnesium 24									barium 137			radium	_
	_									sodium m 23													_

71	Γn	lutetium	175	103	ר	lawrencium	ı
	Υp	-				_	
69	T	thulium	169	101	Md	mendelevium	ı
89	ш	erbium	167	100	Fm	ferminm	I
29	웃	holmium	165	66	Es	einsteinium	ı
99	ò	dysprosium	163	86	రే	californium	ı
65	Д	terbium	159	26	益	berkelium	ı
64	В	gadolinium	157	96	Cm	curium	ı
63	Ш	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pu	plutonium	ı
61	Pm	promethium	ı	93	dN	neptunium	ı
09	PN	neodymium	144	92	\supset	uranium	238
29	Ą	praseodymium	141	91	Ра	protactinium	231
28	Ce	cerium	140	06	Т	thorium	232
22	Гa	lanthanum	139	89	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.